he Future of Formalised Mathematics

Lawrence C Paulson

5 UNIVERSITY OF

4% CAMBRIDGE

1. Formalised Mathematics lToday

Formalised Mathematics has Arrived!

- Flyspeck project: verifying the proof of the Kepler
Conjecture by Ferguson and Hales (1998).

-+ The proof was too complicated for referees and also

relied on computer code.

- The proof text and code were subsequently verified in

a collaborative effort involving

OL Light and Isabelle.

- four Colour Theorem: the 1976 proof relied on code,
which was finally verified in Coq by Georges Gonthier.

Other Milestones in Formalised Mathematics

- A formalisation of geometry and nonstandard analysis to
check infinitesimal proofs in Newton’s Principia (Fleuriot,
1998) [using Isabelle]

+ Prime number theorem (Avigad; Harrison) [Isabelle and
HOL Light]

- Odd order theorem (Gonthier et al.) [Coq]

- G0del’s constructible universe and (both) incompleteness
theorems (Paulson)

What is the Point of Doing Maths by Machine??

To validate gigantic proofs

To reveal hidden assumptions

To create vast libraries of
mathematical knowledge

Ultimately: to augment
human intelligence

But Isn’t Formalised Mathematics Impossible”?

Whitehead and Russell needed We have better formal
362 pages to prove 1+1=2! systems than theirs.

Gddel proved that all “good” formal We don't need a universal
systems must be incomplete! formal system.

Church proved that first-order We use automation to
logic is undecidable! assist intuition.

Some History; Some Systems

- NG de Bruijn’s Automath (1968): pioneering; based on a
novel type theory; formalised the construction of the reals

- Coq by Coguand and Huet (1984) and many others: the
most advanced type theory proof assistant

- A Trybulec’s Mizar (1973): based on set theory with “soft
typing” and a readable structured language

- John Harrison: real analysis (1992); floating point
verification of sgrt, In, exp; multivariate analysis, etc.,

using higher-order logic: HOL [Light]

Components of a Proof Assistant

proof libraries

user interface P proof automation
notational basic proof
support language management
SolE aXIQmatlc Correctness, not
formalism performance, is key!

theory

2. Formalised Mathematics: Our Choices

The Dimensions of Formalised Mathematics

Types — or not” What is 1/0?

Search and Syntax of terms

automation and proofs

Type Theory or Set Theory

polymorphism type classes
. /
simple types HOL Isabelle/HOL

T

dependent types Coq

classical sets
AUTOMATH Agda Mizar Isabelle/ZF

predicate subtypes
PVS

Type Class Polymorphism

axiomatically define groups,
rings, topological spaces,
metric spaces,...

prove that something Is a

metric spaces (say) and
inherit all proved properties

... Supporting uniform
mathematical notation

But less flexible than
dependent types —
or classical sets!

...exchanging some flexiblility

for albbstract reasoning

Definedness, or What is 1/07

- Don’t care: all terms denote something, and1/0 = 1/0.
[HOL, Isabelle]

-+ Dependent types: to use x/y, must prove y=0 (but does
the value of x/y depend on this proof?) [Coqg,PVS]

- Free logic: adopt a formalism where defined[x/y] can be
expressed. But if x/0 = x/0 falls, is x/0 = x/0 true”? [IMPS]

- [hree-valued logics??

Search and Automation

heuristic methods:
obvious rewriting and

decision procedures:
inear arithmetic,

elementary set theory,
Grobner basis methods

chaining steps, e.qg.
X+0 = X

fast, predictable,
powerful... but of
imited scope

flexible but ad-hoc;
changes can break proofs

Sledgehammer: The Ultimate in Heuristic Search

Isabelle

Vampire

The problem and all known
facts are preprocessed and
sent to external provers.

+ Any proof is returned as source text.
- We don’t trust the external provers.
+ Our tools write their own proofs!

Syntax, or the Legibility Problem

Mathematical notation is elegant but ambiguous!

Machine notations are merely hideous

rrationality of /2 in Coq

Theorem sqrt2_irrational : "(EX f : frac | ‘f = sqrt 29).
Proof.
Move=> [f Df]; Step [Hf22 H2f2]: ‘(mulf f f) = F2°.

Apply: (eqr_trans (fracr_mul 7 7 ?)); Apply: eqr_trans (fracrz R (Znat 2)).

By Apply: eqr_trans (square_sqrt (ltrW (1tr02 R))); Apply mulr_morphism.
Step Df2: (eqf F2 (mulf f f)) By Apply/andP; Split; Apply/(fracr_legqPx R 7 7).
Move: f Df2 {Hf22 H2f2 Df} => [d m]; Rewrite: /eqf /= -eqz_leq; Move/eqP.
Rewrite: scalez_mul -scalez_scale scalez_mul mulzC {-1 Zpos}lock /= -lock.
Step []1: (Zpos (S d)) = (scalez d (Znat 1)).

By Apply esym; Apply: eqP; Rewrite scalez_pos; Elim d.

Step [n [1]: (EX n | (mulz (Zpos n) (Zpos n)) = (mulz m m)).
Case: m => [n | n]; LeftBy Exists n.
By Exists (S n); Rewrite: —-{1 (Zneg n)}oppz_opp mulz_oppl -mulz_oppr.
Pose i := (addn (S d) n); Move: (legnn i) {m}; Rewrite: {1}/i.
Elim: i n d => // [i Hrec] n d Hi Dn2; Move/esym: Dn2 Hi.
Rewrite: -{n}odd_double_half double_addnn 'zpos_addn; Move/half: n (odd n) => n.
Case; [Move/((congr oddz) 7 7) | Move/((congr halfz) 7 7)].

By Rewrite: Imulz_addr oddz_add mulzC !mulz_addr oddz_add !oddz_double.
Rewrite: addOn addnC -addnA addOz mulz_addr 'halfz_double mulzC mulz_addr.
Case: n => [|n] Dn2 Hi; LeftBy Rewrite: !mulz_nat in Dn2.

Apply: Hrec Dn2; Apply: (leq_trans 3!i) Hi; Apply: leq_addl.
Qed.

rrationality of /2 in HOL

let NSQRT_2 = prove
(‘“'pq. p*xp=2%q*q==>q=0°,
MATCH_MP_TAC num_WF THEN REWRITE_TAC[RIGHT_IMP_FORALL_THM] THEN
REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o AP_TERM ‘EVEN‘) THEN
REWRITE_TAC[EVEN_MULT; ARITH] THEN REWRITE_TAC[EVEN_EXISTS] THEN
DISCH_THEN(X_CHOOSE_THEN ‘m:num‘ SUBST_ALL_TAC) THEN
FIRST_X_ASSUM(MP_TAC o SPECL [‘q:num‘; ‘m:num‘]) THEN
POP_ASSUM MP_TAC THEN CONV_TAC SOS_RULE);;

let SQRT_2_IRRATIONAL = prove
(‘“rational (sqrt(&2)) ¢,
SIMP_TAC|[rational; real_abs; SQRT_POS_LE; REAL_P0OS; NOT_EXISTS_THM] THEN
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
DISCH_THEN(MP_TAC o AP_TERM ‘\x. x pow 2‘) THEN
ASM_SIMP_TAC[SQRT_POW_2; REAL_POS; REAL_POW_DIV; REAL_POW_2; REAL_LT_SQUARE;

REAL_OF_NUM_EQ; REAL_EQ_RDIV_EQ] THEN

ASM_MESON_TAC[NSQRT_2; REAL_OF_NUM_EQ; REAL_OF_NUM_MUL]);;

Irrationality of /2 in Isabelle/HOL

theorem assumes "prime p" shows "sqrt p ¢ Q"

proof
from <prime p> have p: "1 < p" by (simp add: prime deft)
assume "sqrt p € Q"
then obtain m n :: nat where

n: "r % 0" and sqrt _rat: "|sgrt p} = m / n"
and "coprime n " by (rule Rats abs nat div natE)
have eq: "m? = p * n2"
proof -
from n and sqrt rat have "m = (sqrt p} * n" by simp

then show "m2 = p * n2"
by (metis abs _of nat of nat _eq iff of nat mult power2 eq squarc recal sqrt_abs2 rca

qed
have "p ¢vd m A p dvd n"
proof
from eq have "p dvd m?" .. sledgehammer proofs

with <prime p- show "p dvd mn" by (rule prime dvd power nat)
then obtain k where "m = p * k"
with ec have "p * n? = p? * k?" py (auto simp add: pcocwer2 eg square ac simps)
with <prime p> show "p dvd n"
by (metis dvd triv 1le7t nat mult dvd cancell power2 ec square prime dvd power nat

qed
then have "p dvd gcd m n" by simp
with <coprime m n> have "p = 1" by simp

with p show False by simp
qed

Leqible proofs (Mizar, Isar) are Necessary!

- Jo support maintenance
+ sometimes definitions must be corrected
» heuristic proof methods can change
- To allow reuse, eventually translation to other systems
- To bulld confidence In the correctness of verification tools

(since we can inspect the reasoning)

What do Real Mathematicians Want”

- Harvey Friedman: set
theoretic foundations with
“soft typing” and
traditional mathematical
notation. Free logic for
undefined terms!

- Tim Gowers: automatic
theorem proving, no
search, proofs expressed
IN natural language

- NG de Bruijn: dependent

types but with classical
logic. NO to set theory!

eXxX

SY
Nt

- Dana Scott: interested in
ex

sting technology;
oert on free logic and

mpathetic to
uitionism.

\\e
v@
('

“Q’

What Does Isabelle/HOL Give Them?

Polymorphism with axiomatic type classes
-+ “Don't care” about undefined values, indeed x/0 = O!
- Heuristic proof search including sledgehammer
+ Structured proof language (Isar)

Interactive development environment (IDE) with "live
editing” of proofs

Not a perfect match, but better than some...

3. Formalised Computer Algebra Technigques

real quantifier elimination (QE)

Automatic removal of quantifiers for
problems involving real polynomials

3z [az® + bz + ¢ = 0]

<—
b* > 4dac A (c =0V a # 0 Vb>>4ae)
b # 0

But the equivalent quantifier-free
formula can be messy and enormous...

real QE: some history and applications

- Tarski (1930): A first-order RCF “RCF (real-closed field):
formula can be replaced by an any field elementarily
equivalent, quantifier-free one. equivalent to the reals

- Implies the decidability of RCF and
of Euclidean geometry.

- Collins (1975): Cylindrical Algebraic
Decomposition (CAD), feasible but
doubly exponential

- For constraint solving, optimisation,
etc., iInvolving polynomials

Computer Algebra + Verification: Some Milestones

- J Harrison: real QE using semi-definite programming,
sum-of-squares and other decision procedures

- |sabelle: proof methods for algebra using SOS [as above]
and Grobner bases

- Munoz et al.: Bernstein polynomials, Sturm’s theorem,
etc., for proving polynomial inequalities [in PVS]

- CGohen and Mahboubi: implementation of CAD in Coq, a
theory of the real algebraic numbers™ and a proof of QE
using pseudo-remainder sequences

Aside: What Are Real Algelbraic Numbers”?

They are real roots of polynomials (with integer coefficients)

- typically represented by a squarefree polynomial, along
with a positive integer or an interval to isolate the root

- arithmetic performed symbolically (and exactly) by
polynomial manipulations

- equality Is decidable: they are a subset of the computable
reals (equality is undecidable on real numbers)

They are the foundation of many CA algorithmes.

Computer Algebra in a Proof Assistant?

problems

verifiable solutions

: *
Harrison and Théry, 1998

We don’t trust any external CA system.
SO we must either. ..

- Ask for a verifiable certificate.
- White our own code and verity 1.

iINnternal

implementation
of CA algorithm

Mahboubi, 2005

Towards Real QE in Isabelle (work by Wenda Li)

Univariate case: CAD returns the list of roots of a rational
oolynomial (as real algebraic numbers). This list can be
verified using the Sturm-Tarski theorem.

-+ Can be extended to decide the sign of a bivariate
polynomial at a real algebraic point. Algebraic arithmetic
can be performed using external code, then verified.

+ The recent verification of Cauchy's residue theorem, the
argument principle and Rouché’s theorem will allow the
verification of bivariate certificates.

4. The Future of Formalised Mathematics

Cog

- The famous “Mathematical Components"” library used to
formalise the odd order theorem

-+ Ongoing projects to certify numerical algorithms for
differential equations

- Continued work on real algebraic geometry and real QE

HOL Light

* Huge Inbuilt library of over 23,000 theorems, including
12,400 in complex and multivariate analysis

+Including 86 of the “100 famous theorems” list
maintained by Freek Wiedilk.

- largely the work of a single person: John Harrison

Isabelle’s Archive of Formal Proofs

- Online repository for users’ proof developments
- Currently over 280 entries, arriving one per week!
Nearly 2 million lines of proof text

- These have been maintained through successive
versions of Isabelle since 2004.

The Future?

- Most undergraduate mathematics will be formalised. But
proofs should be intelligible to people, not just machines.

- Current verification efforts focus on the digital world:
compllers, operating systems, protocols...

- Are we ready to deal with the real, analogue, world”

- Can we do mathematics as well as we do verification?

Acknowledgements

- The development of Isabelle has been supported by
various Engineering and Physical Sciences Research
Council grants.

- Tobias Nipkow’s group at the Technical University of

Munich has made enormous contributions, as has the
worldwide Isabelle community.

Our tools are coded in Standard ML.

